SMAP-WS: a parallel web service for structural proteome-wide ligand-binding site comparison
نویسندگان
چکیده
The proteome-wide characterization and analysis of protein ligand-binding sites and their interactions with ligands can provide pivotal information in understanding the structure, function and evolution of proteins and for designing safe and efficient therapeutics. The SMAP web service (SMAP-WS) meets this need through parallel computations designed for 3D ligand-binding site comparison and similarity searching on a structural proteome scale. SMAP-WS implements a shape descriptor (the Geometric Potential) that characterizes both local and global topological properties of the protein structure and which can be used to predict the likely ligand-binding pocket [Xie,L. and Bourne,P.E. (2007) A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand-binding sites. BMC bioinformatics, 8 (Suppl. 4.), S9.]. Subsequently a sequence order independent profile-profile alignment (SOIPPA) algorithm is used to detect and align similar pockets thereby finding protein functional and evolutionary relationships across fold space [Xie, L. and Bourne, P.E. (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc. Natl Acad. Sci. USA, 105, 5441-5446]. An extreme value distribution model estimates the statistical significance of the match [Xie, L., Xie, L. and Bourne, P.E. (2009) A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics, 25, i305-i312.]. These algorithms have been extensively benchmarked and shown to outperform most existing algorithms. Moreover, several predictions resulting from SMAP-WS have been validated experimentally. Thus far SMAP-WS has been applied to predict drug side effects, and to repurpose existing drugs for new indications. SMAP-WS provides both a user-friendly web interface and programming API for scientists to address a wide range of compute intense questions in biology and drug discovery. SMAP-WS is available from the URL http://smap.nbcr.net.
منابع مشابه
Cloud Computing for Protein-Ligand Binding Site Comparison
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and...
متن کاملA procedure for Web Service Selection Using WS-Policy Semantic Matching
In general, Policy-based approaches play an important role in the management of web services, for instance, in the choice of semantic web service and quality of services (QoS) in particular. The present research work illustrates a procedure for the web service selection among functionality similar web services based on WS-Policy semantic matching. In this study, the procedure of WS-Policy publi...
متن کاملBusiness Rule Standards -- Interoperability and Portability
Figure 1: Example insurance scenario Consider a commercial Web site for an insurance company (Figure 1). The web site surfaces Web pages that allow customers, agents, employees and partners to interact with applications. The site also exposes a Web service interface using WSDL [WSDL] to document interfaces and a WS-Interoperability [WSI] binding for access from partner systems. This scenario in...
متن کاملWeb Service Choreography Verification Using Z Formal Specification
Web Service Choreography Description Language (WS-CDL) describes and orchestrates the services interactions among multiple participants. WS-CDL verification is essential since the interactions would lead to mismatches. Existing works verify the messages ordering, the flow of messages, and the expected results from collaborations. In this paper, we present a Z specification of WS-CDL. Besides ve...
متن کاملRecognition of Structure Similarities in Proteins
Protein fold structure is more conserved than its amino acid sequence and closely associated with biological function, so calculating the similarity of protein structures is a fundamental problem in structural biology and plays a key role in protein fold classification, fold function inference, and protein structure prediction. Large progress has been made in recent years in this field and many...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2010